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Abstract
We discuss generic spin squeezing operators (quadratic in angular momentum
operators) capable of squeezing out quantum-mechanical noise from a system
of two-level atoms (spins) in a coherent state. Such systems have been
considered by Kitagawa and Ueda (1991 Phys. Rev. Lett. 67 1852, 1993 Phys.
Rev. A 47 5138) in this context and a Hamiltonian of this nature governs the
Lipkin model (Lipkin et al 1965 Nucl. Phys. 62 188) which is relevant to
nuclear physics.

PACS numbers: 42.50.Dv, 03.67.Mn, 03.65.Ud

1. Introduction

We consider a system of N two-level atoms (TLA) and represent them by the algebra of spin
one-half particles with total angular momentum J with j = N/2. Hence, we refer to the
system as a system of N spins or TLA. We start with the system in a coherent state [1]

|j, ξ 〉 = eξJ−−ξ∗J+ |j,m = +j 〉

= 1

(1 + |ξ |2)j
2j∑

n=0

√
2jCnξ

n|j,m = j − n〉 (1)

where ξ is a complex number given by

ξ = tan(θ/2) eiφ.

θ = 0 represents the state with all the atoms in the upper of the two states (spin-up). The
coherent state satisfies the equality sign in the uncertainty relation for the components of
‘angular momentum’ in a plane normal to the mean-spin vector 〈J〉 with equal amount of
noise in its two quadratures. The mean-spin vector has the magnitude

|〈J〉| =
√

〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2. (2)
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In other words, in a frame in which 〈J〉 is along an axis (z′ say), the minimum uncertainty
condition is satisfied by the state described by equation (1), namely,

�Jx ′ = �Jy ′ =
√

|〈J〉|/2 (3)

where �Jx ′,y ′ =
√〈

J 2
x ′,y ′

〉 − 〈Jx ′,y ′ 〉2 are the variances in the two quadratures. If in such a

frame the condition

�Jx ′
√

2/|〈J〉| or �Jy ′
√

2/|〈J〉| < 1 (4)

is satisfied in some state of the system, then we shall say that the atomic system is spin
squeezed.

Model Hamiltonians through which spin squeezed states could be realized were proposed
by Kitagawa and Ueda [2] and others [3]. Since then, it has been vigorously studied in various
atom–field systems [4–12]. When a TLA interacts with a squeezed radiation field, squeezing
can be transferred from the field to the atomic system [4]. Self-squeezing of the spin system
is possible if it is adequately nonlinear in its interaction with the radiation field [5]. The
well-known Tavis–Cummings model also exhibits spin squeezing [6]. Its importance has been
enhanced further due to its potential application in the area of quantum information [7–10].

We have been studying various quantum-mechanical operators, rather nonlinear in spin
operators, capable of producing spin squeezed states when applied to a TLA. In [11], spin
squeezing properties of a pseudo-Hermitian operator

� = (eεJ+ + e−εJ−)/2 (5)

with real ε have been studied. The operator � has the features of pseudo-Hermicity as �† �= �

but yet �† = η�η−1 where η is a linear invertible Hermitian operator. Further, η can be written
as η = O†O where O = O† = exp(−εJz) and, so, the eigenstates of � have real eigenvalues.
This operator is of interest in the study of a TLA interacting with a squeezed vacuum [4].
Studies in [2, 12] reveal that with a Hamiltonian quadratic in the spin operator Jz, that is,

Ĥ1 = −�J 2
z (6)

(where � is a constant characteristic of the system) the corresponding evolution operator
exp

(−i�tJ 2
z

)
when applied to a spin coherent state in equation (1) produces spin squeezing

in the TLA. This operator can describe the interaction of a TLA with the radiation field in a
high-Q dispersive cavity [13]. This operator is also a special case of the so-called Lipkin–
Meshkov–Glick (LMG) Hamiltonian for a many-body fermionic system [14].

In this paper, we identify the quadratic atomic (spin) operator which can introduce a
squeeze from an analogy between the spin and bosonic systems. We do so in section 2 and
study its squeezing properties in the following sections. In section 3, we give analytical
results for a two-atom system which provide some insight into the properties of the proposed
operator. The numerical results for N > 2 are discussed in section 4. We conclude the paper in
section 5 with a comment on possible realization of such operators in some physical systems.

2. The operator

We begin with the derivation of a displacement operator for the spin coherent state in
equation (1). This can be achieved if we cast the state |j, ξ 〉 in the Schwinger representation
[15]. The spin operators in the Schwinger representation are constructed by defining
bosonic annihilation operators for two modes ai(i = +,−) such that

[
ai, a

†
j

] = δij and

[ai, aj ] = 0 = [
a
†
i , a

†
j

]
. They take the forms J+ = a

†
+a−, Jz = [

a
†
+a+ − a

†
−a−

]/
2, etc. The
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spin coherent state |j, ξ 〉 takes the form

|j, ξ 〉 = 1

(1 + |ξ |2)j√2j !

2j∑
n=0

2jCnξ
n(a†

+)
n
(
a
†
−
)2j−n|0+, 0−〉

= D+,−|0+, 0−〉 (7)

where |0+, 0−〉 are vacuum (fictitious) states for + and − modes. Comparing this form of the
spin coherent state with the Glauber–Sudarshan coherent state for bosonic particles [16]

|α〉 = D(α)|0〉 (8)

where D(α) is the well-known displacement operator

D(α) = exp(αa† − α∗a)

= e−|α|2/2
∞∑

n=0

αn(a†)n

n!
(9)

it may be said that D+,− via the Schwinger construction is a ‘displacement’ operator for spin
systems.

The above analogy between Glauber–Sudarshan coherent states and the spin coherent
states suggests that one may attempt to obtain spin squeezed states in a manner similar to
that employed for the bosonic case. Thus a quadratic form of the generators a and a† of
the Heisenberg–Weyl algebra was used to set up the operators which when acting on the
Glauber–Sudarshan coherent states resulted in the squeezed states, namely, taking a cue from
[17],

Sbosonic = exp
[

1
2 (χ∗a2 − χa†2)

]
. (10)

Likewise, for the atomic or (pseudo)-spin coherent states it is tempting to consider
exponentiation of the quadratic form constructed out of the generators Jx, Jy and Jz of the
rotation group. Consider such a most general form, namely, JkJl where l.k run from x, y, z.
Note that Jl transforms like a vector operator (in the three-dimentional representation) under
rotation and accordingly JlJk is a tensor of the second rank. However, this may be reduced in
the following manner:

JlJk = [
1
2 (JlJk + JkJl) − 1

3δlkJ
2
]

+
[(

1
2 (JlJk − JkJl)

)]
+

[
1
3δlkJ

2
]
.

The first term in square brackets is the components of a traceless symmetric second-rank
tensor (with five independent components), the second is the components of the antisymmetric
second-rank tensor which by virtue of the commutation relation [Jk, Jl] = iεlksJs is expressed
in terms of the vector representation and the last term in square backets is a scalar J 2. This is
tantamount to the reduction of the direct product of two vectors

3 ⊗ 3 = 5 ⊕ 3 ⊕ 1.

Thus the exponentiation in exp iηJkJl being quadratic in the generation of the rotation group
can be decomposed into the sum of three operators with the trace

∑
JkJlδkl = J 2 yielding a

mere overall phase, the antisymmetric form in the exponent just a rotation, and the quadratic
form in an exponent yielding the non-trivial squeeze. Since the different components of the
quadrupole tensor are related via rotations we can in effect express the squeezing operator in
the case of the spin system choosing, for example, the fiducial quadratic forms

Sspin = exp[η(JxJy + JyJx)]
(11)

S ′
spin = exp

[
ηJ 2

z

]
.

3
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Thus Sspin can represent the time evolution of a state vector under the action of a Hamiltonian

H = ζ [JxJy + JyJx] (12)

where η = −iζ t .
Indeed, H is connected to other quadratic combinations of spin operators, namely,

[JyJz + JzJy] and [JxJz + JzJx] by mere rotations. Similarly, Ĥ1 in equation (6); Jx
2 and

Jy
2 are related to one another by simple rotations. Thus the operators in equation (11) can

be taken to be the representatives of interaction Hamiltonians having quadratic forms of spin
operators. Kitagawa and Ueda [2] has shown that the operator S ′

spin in equation (11) produces
spin squeezing resulting from a single-axis twisting and the operator Sspin in equation (11)
or the Hamiltonian in equation (12) can give rise to spin squeezing resulting from two-axis
counter twisting. We, however, present a detailed account of this operator and show that a
large number of atoms (spins) can be squeezed. We also point out the possibilities of its
physical realization.

In [12] we have already studied the spin squeezing dynamics of S ′
spin. What follows is a

discussion on spin squeezing properties of the operator.
We can write J+ and J− in the Schwinger representation and proceed to examine the spin

squeezing properties when operated upon a spin coherent state. This may produce a spin
squeezed state

|sss〉 = SspinD+,−|0+, 0−〉
in the lines of Yuen’s representation for a bosonic squeezed state [17]. However, this method
gets very complicated and, so, we investigate the squeezing properties of Sspin as follows.

We assume that the operator acts on a system of atoms prepared initially in a coherent
state |θ, φ〉 ≡ |j, ξ 〉. This can be achieved by sending the atoms through a cavity whose
single-mode is maintained by the radiation from a laser. The polar angle θ is decided by the
interaction time of the atoms with the cavity field. We first consider the action of Sspin on
a two-atom coherent state as it gives analytical results. With the insight gained from these
results, we go ahead with the numerical analysis of squeezing properties of Sspin acting on a
system having more than two atoms.

3. A two-atom system

In addition to this being the first step of our general study, the bipartite system is of special
interest in the study of quantum entanglement [7–10].

The initial state of the system, the coherent state, is in this case given by

|ξ, θ, φ〉 = 1

(1 + |ξ |2) [|1, +1〉 +
√

2ξ |1, 0〉 + ξ 2|1,−1〉] (13)

which is a linear superposition of the three Wigner states with m = 0,±1. The action of Sspin

on the |ξ, θ, φ〉 changes the amplitudes of the Wigner states giving

|sss〉 = Sspin|ξ, θ, φ〉
= C1|1, +1〉 + C2|1, 0〉 + C3|1,−1〉 (14)

where

C1 = 1

(1 + |ξ |2) [cos(2|η|) +
√

η/η∗ξ 2 sin(2|η|)],

C2 =
√

2ξ

(1 + |ξ |2)
4
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and

C3 = 1

(1 + |ξ |2) [ξ 2 cos(2|η|) −
√

η∗/η sin(2|η|)].

It has been shown in [18] that this state radiates squeezed light [17], thus indicating
strongly that the collective two-atom state is spin squeezed [5]. However, its spin squeezing
properties, as is known by now [2–12] and defined in equation (4), have not been discussed
there. We present them below.

It is straightforward to calculate the moments and correlation functions of the spin
operators. We find that all the three correlation functions, namely 〈JxJy +JyJx〉, 〈JxJz +JzJx〉
and 〈JyJz + JzJy〉 are nonzero and for real ξ and η one of them, 〈JxJz + JzJx〉, survives. This
indicates the squeezing capabilities of Sspin for all possible values of ξ and η. This is due to
the fact that nonzero values of the correlation function (at least one) are a necessity for spin
squeezing to take place [2, 11]. The variances in the two quadratures, namely x ′ and y ′, in the
rotated frame as defined in equations (2)–(4) are given by

(�Jx ′)2 = 1

|〈J〉|2
[

1

2(1 + ξ 2)4
{(ξ 8 − 2ξ 4 + 1) cos2(4η)− 2ξ 2(ξ 4 − 1) sin(8η) + 4ξ 4 sin2(4η)}

+
1

(1 + ξ 2)6

{
(3ξ 10 − 10ξ 6 + 3ξ 2) cos3(4η) − 3(ξ 10 − 2ξ 6 + ξ 2) cos2(4η)

− 2(ξ 10 − 4ξ 8 − 4ξ 6 − 4ξ 4 + ξ 2) cos(4η)

− 1

2
(ξ 12 − 15ξ 8 + 15ξ 4 − 1) sin3(4η) − 12ξ 6 sin2(4η)

+
1

2
(ξ 12 + 8ξ 10 − 11ξ 8 + 11ξ 4 − 8ξ 2 − 1) sin(4η) + 6ξ 4

× (ξ 4 − 1) sin(8η) + 4ξ 10 + 8ξ 6 + 4ξ 2

}]
(15)

and

(�Jy ′)2 = 1

2

[
1 +

1

(1 + ξ 2)2
{2ξ 2(1 − cos(4η)) + (1 − ξ 4) sin(4η)}

]
. (16)

In equation (15), the presence of |〈J〉|2 in the denominator is due to the rotation required to
bring 〈J〉 along the required direction, here, z′-axis. The mean-spin vector is given by

|〈J〉|2 = 1

(1 + ξ 2)4
[4ξ 2{1 + ξ 4 + 2ξ 2 cos(4η) − (1 − ξ 4) sin(4η)}

+ (1 − ξ 4)2 cos2(4η) + 4ξ 4 sin2(4η) − 2ξ 2(ξ 4 − 1) sin(8η)]. (17)

It is easy to note that for η = 0 the results reduce to that for a spin coherent state, that is,
|〈J〉| = 1 and �Jx ′ = �Jy ′ = 1/

√
2 in accordance with equations (2) and (3) for a two-atom

system. Further, we note in equations (15) and (16) that the arguments of all the circular
functions appearing there are in the form of 4η and 8η. Hence, the variances return to their
initial condition, that is a coherent state, for η = nπ/2 where n is an integer. The spin
squeezing parameters Sx ′ and Sy ′ as defined in equation (4)

Sx ′,y ′ = �Jx ′,y ′
√

2/|〈J〉| (18)

have interesting relations for θ = 0 and π :

Sx ′ |θ=0 = Sy ′ |θ=π =
√

1 + sin(4η)

cos(4η)
(19)
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Figure 1. Squeezing S in the two-atom system is plotted versus η = ζ t in units of π . Note that
for θ = π , curves are the same as for θ = 0 but Sx′ and Sy′ are interchanged.

and

Sx ′ |θ=π = Sy ′ |θ=0 =
√

1 − sin(4η)

cos(4η)
. (20)

Because of the above observations it is sufficient to study the variances for 0 < η � π/2. We
display them in figure 1 and note perfect squeezing of the two-spin system.

4. Systems with j > 1

For a system having more than two two-level atoms, it is highly complicated to get an analytical
expression. However, the problem can be tackled somewhat numerically.

We are concerned about the evolution

|sss〉 = Sspin|j, ξ 〉 (21)

where j > 1. Quantum-mechanical average of any spin operator or products of them, say Ô,
is given by

〈Ô〉 = 〈sss|Ô|sss〉 =
j∑

m′=−j

j∑
m′′=−j

〈sss|j,m′〉〈j,m′|Ô|,m′′〉〈j,m′′|sss〉. (22)

The inner product 〈j,m|sss〉 is given by

〈j,m|sss〉 = 〈j,m|Sspin|j, ξ 〉
=

∑
k

〈j,m|sssk〉〈sssk|j, ξ 〉 e−iλkt (23)

where we have used Sspin = exp(−iHt) with H being given by equation (12). The |sssk〉 are
the eigenvectors of H with eigenvalues λk .

6



J. Phys. A: Math. Theor. 41 (2008) 145302 P K Pathak et al

0 10 20 30 40 50
J

0

0.5

1

1.5

2

S

θ=π/4, φ=π/4
θ=π/3, φ=π/4
θ=π/2, φ=π/4

ζt=π/20

Figure 2. Squeezing in y′ quadrature as a function of j . Note that there is no squeezing in the
other quadrature for such interaction times.
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Figure 3. Oscillations in squeezing in x′ quadrature as a function of η = ζ t . θ = φ = 0. The
solid and dotted lines are for j = 4 and 15 respectively.

The dynamics exhibit a rich variety of characteristics of spin squeezing. In figure 2, we
display S ′

y for short-interaction time, that is, η = ζ t = π/20. The striking feature there is
that, for θ = π/2, S ′

y oscillates just below the line S ′
y = 1 indicating spin squeezing for all

values of j . Thus, the operator Sspin is capable of squeezing a large number of atoms if they

7
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are initially prepared in a coherent state such that 〈j, ξ |Jz|j, ξ 〉 = 0. The distribution function
for the initial condition θ = π/2 takes the form

P(j,m) = |〈j,m|j, ξ = 1〉|2 = 1

22j

(2j)!

(j + m)!(j − m)!
(24)

where we have taken φ = 0 for simplicity. It can easily be shown that P(j,m) peaks at m = 0
by using the expression for the digamma function, the derivative of the factorial function. The
state |j,m = 0〉 has the property of maximum correlation among individual spins [19], which
is exploited by the operation Sspin to squeeze out noise displayed in figure 2. This type of
behavior has also been noticed in the spin squeezing properties of pseuo-Hermitian operator
discussed in [11]. This striking property of the spin squeezing operator persists for longer
interaction times too.

We display in figure 3 the variations in squeezing as a function of time for j > 1.
A comparison with figure 1 indicates that the oscillations in squeezing with time increase
with j .

5. Conclusions

We have shown that operators in the form of exponentian of quadratic forms of spin operators,
JkJl , have the spin squeezing properties when operated upon a spin coherent state. We have
shown in figure 2 that the operator can squeeze out noise from an ensemble having a large
number of spins initially prepared in a coherent state with θ = π/2 and φ = π/4. As shown
there, a deviation from this initial condition reduces the number of squeezed spins drastically.
These results, however, would be influenced by the surrounding reservoirs which we plan to
study in a later publication.

The quadratic forms of spin operators have been discussed in the literature for quite
sometime. For example, a widely discussed interaction is the so-called Lipkin interaction
Hamiltonian [14]

H = G1
(
J 2

+ + J 2
−
)

+ G2(J+J− + J−J+), (25)

where G1 and G2 are the coupling constants representing the two-body interactions. Indeed
these two types of terms are the archetypes of the Hamiltonian quadratic in the generators
and related to what we expressed through equations (11). The operators in equations (11)
are special cases of the Lipkin Hamiltonian. The Sspin also appears in the Hamiltonian of a
complex magnetic molecule in a static magnetic field [20]. The operator S ′

spin can be realized
in an optical system consisting of an ensemble of atoms in a high-Q dispersive cavity [13].
We have studied its behavior in detail in [12]. Also, the exponent in S ′

spin describes atomic
cooperation in a Dicke system [19] placed inside a cavity and driven by an external laser field
[21]. Hence, its Hamiltonian includes a term which is proportional to J 2

z . Our recent study
shows that this system exhibits spin squeezing [22].
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